Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
12 tokens/sec
GPT-4o
92 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
480 tokens/sec
Kimi K2 via Groq Premium
195 tokens/sec
2000 character limit reached

Learning Parameterized Quantum Circuits with Quantum Gradient (2409.20044v1)

Published 30 Sep 2024 in quant-ph

Abstract: Parameterized quantum circuits (PQCs) are crucial for quantum machine learning and circuit synthesis, enabling the practical implementation of complex quantum tasks. However, PQC learning has been largely confined to classical optimization methods, which suffer from issues like gradient vanishing. In this work, we introduce a nested optimization model that leverages quantum gradient to enhance PQC learning for polynomial-type cost functions. Our approach utilizes quantum algorithms to identify and overcome a type of gradient vanishing-a persistent challenge in PQC learning-by effectively navigating the optimization landscape. We also mitigate potential barren plateaus of our model and manage the learning cost via restricting the optimization region. Numerically, we demonstrate the feasibility of the approach on two tasks: the Max-Cut problem and polynomial optimization. The method excels in generating circuits without gradient vanishing and effectively optimizes the cost function. From the perspective of quantum algorithms, our model improves quantum optimization for polynomial-type cost functions, addressing the challenge of exponential sample complexity growth.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.