Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple and Efficient Equivariant Message Passing Neural Network Model for Non-Local Potential Energy Surface (2409.19864v1)

Published 30 Sep 2024 in physics.chem-ph

Abstract: Machine learning potentials have become increasingly successful in atomistic simulations. Many of these potentials are based on an atomistic representation in a local environment, but an efficient description of non-local interactions that exceed a common local environment remains a challenge. Herein, we propose a simple and efficient equivariant model, EquiREANN, to effectively represent non-local potential energy surface. It relies on a physically inspired message passing framework, where the fundamental descriptors are linear combination of atomic orbitals, while both invariant orbital coefficients and the equivariant orbital functions are iteratively updated. We demonstrate that this EquiREANN model is able to describe the subtle potential energy variation due to the non-local structural change with high accuracy and little extra computational cost than an invariant message passing model. Our work offers a generalized approach to create equivariant message passing adaptations of other advanced local many-body descriptors.

Summary

We haven't generated a summary for this paper yet.