Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
464 tokens/sec
Kimi K2 via Groq Premium
181 tokens/sec
2000 character limit reached

Instance Configuration for Sustainable Job Shop Scheduling (2409.18972v1)

Published 12 Sep 2024 in cs.DC and math.OC

Abstract: The Job Shop Scheduling Problem (JSP) is a pivotal challenge in operations research and is essential for evaluating the effectiveness and performance of scheduling algorithms. Scheduling problems are a crucial domain in combinatorial optimization, where resources (machines) are allocated to job tasks to minimize the completion time (makespan) alongside other objectives like energy consumption. This research delves into the intricacies of JSP, focusing on optimizing performance metrics and minimizing energy consumption while considering various constraints such as deadlines and release dates. Recognizing the multi-dimensional nature of benchmarking in JSP, this study underscores the significance of reference libraries and datasets like JSPLIB in enriching algorithm evaluation. The research highlights the importance of problem instance characteristics, including job and machine numbers, processing times, and machine availability, emphasizing the complexities introduced by energy consumption considerations. An innovative instance configurator is proposed, equipped with parameters such as the number of jobs, machines, tasks, and speeds, alongside distributions for processing times and energy consumption. The generated instances encompass various configurations, reflecting real-world scenarios and operational constraints. These instances facilitate comprehensive benchmarking and evaluation of scheduling algorithms, particularly in contexts of energy efficiency. A comprehensive set of 500 test instances has been generated and made publicly available, promoting further research and benchmarking in JSP. These instances enable robust analyses and foster collaboration in developing advanced, energy-efficient scheduling solutions by providing diverse scenarios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.