Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Defining Characteristic Case of the Representations of $\mathrm{GL}_{n}$ and $\mathrm{SL}_{n}$ over Principal Ideal Local Rings (2409.17982v1)

Published 26 Sep 2024 in math.RT and math.GR

Abstract: Let $W_{r}(\mathbb{F}{q})$ be the ring of Witt vectors of length $r$ with residue field $\mathbb{F}{q}$ of characteristic $p$. In this paper, we study the defining characteristic case of the representations of $\mathrm{GL}{n}$ and $\mathrm{SL}{n}$ over the principal ideal local rings $W_{r}(\mathbb{F}{q})$ and $\mathbb{F}{q}[t]/t{r}$. Let ${\mathbf{G}}$ be either $\mathrm{GL}{n}$ or $\mathrm{SL}{n}$ and $F$ a perfect field of characteristic $p$, we prove that for most $p$ the group algebras $F[{\mathbf{G}}(W_{r}(\mathbb{F}{q}))]$ and $F[{\mathbf{G}}(\mathbb{F}{q}[t]/t{r})]$ are not stably equivalent of Morita type. Thus, the group algebras $F[{\mathbf{G}}(W_{r}(\mathbb{F}{q}))]$ and $F[{\mathbf{G}}(\mathbb{F}{q}[t]/t{r})]$ are not isomorphic in the defining characteristic case.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com