Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unveiling Ontological Commitment in Multi-Modal Foundation Models (2409.17109v1)

Published 25 Sep 2024 in cs.CV and cs.AI

Abstract: Ontological commitment, i.e., used concepts, relations, and assumptions, are a corner stone of qualitative reasoning (QR) models. The state-of-the-art for processing raw inputs, though, are deep neural networks (DNNs), nowadays often based off from multimodal foundation models. These automatically learn rich representations of concepts and respective reasoning. Unfortunately, the learned qualitative knowledge is opaque, preventing easy inspection, validation, or adaptation against available QR models. So far, it is possible to associate pre-defined concepts with latent representations of DNNs, but extractable relations are mostly limited to semantic similarity. As a next step towards QR for validation and verification of DNNs: Concretely, we propose a method that extracts the learned superclass hierarchy from a multimodal DNN for a given set of leaf concepts. Under the hood we (1) obtain leaf concept embeddings using the DNN's textual input modality; (2) apply hierarchical clustering to them, using that DNNs encode semantic similarities via vector distances; and (3) label the such-obtained parent concepts using search in available ontologies from QR. An initial evaluation study shows that meaningful ontological class hierarchies can be extracted from state-of-the-art foundation models. Furthermore, we demonstrate how to validate and verify a DNN's learned representations against given ontologies. Lastly, we discuss potential future applications in the context of QR.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com