Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Stochastic neighborhood embedding and the gradient flow of relative entropy (2409.16963v2)

Published 25 Sep 2024 in stat.ML, math.CA, and math.PR

Abstract: Dimension reduction, widely used in science, maps high-dimensional data into low-dimensional space. We investigate a basic mathematical model underlying the techniques of stochastic neighborhood embedding (SNE) and its popular variant t-SNE. Distances between points in high dimensions are used to define a probability distribution on pairs of points, measuring how similar the points are. The aim is to map these points to low dimensions in an optimal way so that similar points are closer together. This is carried out by minimizing the relative entropy between two probability distributions. We consider the gradient flow of the relative entropy and analyze its long-time behavior. This is a self-contained mathematical problem about the behavior of a system of nonlinear ordinary differential equations. We find optimal bounds for the diameter of the evolving sets as time tends to infinity. In particular, the diameter may blow up for the t-SNE version, but remains bounded for SNE.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets