Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unified quantitative analysis of the Stokes equations in dilute perforated domains via layer potentials (2409.16960v2)

Published 25 Sep 2024 in math.AP

Abstract: We develop a unified method to obtain the quantitative homogenization of Stokes systems in periodically perforated domains with no-slip boundary conditions on the perforating holes. The main novelty of our paper is a quantitative analysis of the asymptotic behavior of the two-scale cell correctors via periodic Stokes layer potentials. The two-scale cell correctors were introduced and analyzed qualitatively by Allaire in the early 90's. Thanks to our layer potential approach, we also provide a novel explanation of the conductivity matrix in Darcy's model, of the Brinkman term in Brinkman's model, and explain the special behavior for $d=2$. Finally, we also prove quantitative homogenization error estimates in various regimes of ratios between the size of the perforating holes and the typical distance between holes. In particular we handle a subtle issue in the dilute Darcy regime related to the non-vanishing of the Darcy velocity on the boundary.

Summary

We haven't generated a summary for this paper yet.