Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Effective interface laws for fluid flow and solute transport through thin reactive porous layers (2409.16000v2)

Published 24 Sep 2024 in math.AP

Abstract: We consider a coupled model for fluid flow and transport in a domain consisting of two bulk regions separated by a thin porous layer. The thickness of the layer is of order $\varepsilon$ and the microscopic structure of the layer is periodic in the tangential direction also with period $\varepsilon$. The fluid flow is described by an instationary Stokes system, properly scaled in the fluid part of the thin layer. The evolution of the solute concentrations is described by a reaction-diffusion-advection equation in the fluid part of the domain and a diffusion equation (allowing different scaling in the diffusion coefficients) in the solid part of the layer. At the microscopic fluid-solid interface inside the layer nonlinear reactions take place. This system is rigorously homogenized in the limit $\varepsilon \to 0$, based on weak and strong (two-scale) compactness results for the solutions. These are based on new embedding inequalities for thin perforated layers including coupling to bulk domains. In the limit, effective interface laws for flow and transport are derived at the interface separating the two bulk regions. These interface laws enable effective mass transport through the membrane, which is also an important feature from an application point of view.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.