Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying early tumour states in a Cahn-Hilliard-reaction-diffusion model (2409.15925v1)

Published 24 Sep 2024 in math.AP, cs.NA, math.NA, and math.OC

Abstract: In this paper, we tackle the problem of reconstructing earlier tumour configurations starting from a single spatial measurement at a later time. We describe the tumour evolution through a diffuse interface model coupling a Cahn-Hilliard-type equation for the tumour phase field to a reaction-diffusion equation for a key nutrient proportion, also accounting for chemotaxis effects. We stress that the ability to reconstruct earlier tumour states is crucial for calibrating the model used to predict the tumour dynamics and also to identify the areas where the tumour initially began to develop. However, backward-in-time inverse problems are well-known to be severely ill-posed, even for linear parabolic equations. Moreover, we also face additional challenges due to the complexity of a non-linear fourth-order parabolic system. Nonetheless, we can establish uniqueness by using logarithmic convexity methods under suitable a priori assumptions. To further address the ill-posedness of the inverse problem, we propose a Tikhonov regularisation approach that approximates the solution through a family of constrained minimisation problems. For such problems, we analytically derive the first-order necessary optimality conditions. Finally, we develop a computationally efficient numerical approximation of the optimisation problems by employing standard $C0$-conforming first-order finite elements. We conduct numerical experiments on several pertinent test cases and observe that the proposed algorithm consistently meets expectations, delivering accurate reconstructions of the original ground truth.

Summary

We haven't generated a summary for this paper yet.