Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preference-Guided Refactored Tuning for Retrieval Augmented Code Generation (2409.15895v1)

Published 24 Sep 2024 in cs.SE

Abstract: Retrieval-augmented code generation utilizes LLMs as the generator and significantly expands their code generation capabilities by providing relevant code, documentation, and more via the retriever. The current approach suffers from two primary limitations: 1) information redundancy. The indiscriminate inclusion of redundant information can result in resource wastage and may misguide generators, affecting their effectiveness and efficiency. 2) preference gap. Due to different optimization objectives, the retriever strives to procure code with higher ground truth similarity, yet this effort does not substantially benefit the generator. The retriever and the generator may prefer different golden code, and this gap in preference results in a suboptimal design. Additionally, differences in parameterization knowledge acquired during pre-training result in varying preferences among different generators. To address these limitations, in this paper, we propose RRG (Retrieve, Refactor, Generate), a novel framework for effective and efficient code generation. This framework introduces a code refactorer module between the retriever and the generator to bridge them. The refactoring process transforms the raw retrieved code into a more concise, efficient, and model-friendly version. It eliminates redundant information and noise, reducing the input length. Consequently, the generator receives higher-quality context, enabling it to produce more accurate results with lower inference costs. We conducted comprehensive experiments on multiple datasets. In the experiments, we confirmed the existence of a preference gap between the retriever and the generator, and RRG effectively bridges this gap. Specifically, RRG achieved significant performance improvements, with increases of up to 28% on EM, 13% on BLEU, and 6.8% on CodeBLEU.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Xinyu Gao (58 papers)
  2. Yun Xiong (41 papers)
  3. Deze Wang (3 papers)
  4. Zhenhan Guan (1 paper)
  5. Zejian Shi (1 paper)
  6. Haofen Wang (32 papers)
  7. Shanshan Li (54 papers)

Summary

We haven't generated a summary for this paper yet.