Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

Boosting Cybersecurity Vulnerability Scanning based on LLM-supported Static Application Security Testing (2409.15735v3)

Published 24 Sep 2024 in cs.CR

Abstract: The current cybersecurity landscape is increasingly complex, with traditional Static Application Security Testing (SAST) tools struggling to capture complex and emerging vulnerabilities due to their reliance on rule-based matching. Meanwhile, LLMs have demonstrated powerful code analysis capabilities, but their static training data and privacy risks limit their effectiveness. To overcome the limitations of both approaches, we propose LSAST, a novel approach that integrates LLMs with SAST scanners to enhance vulnerability detection. LSAST leverages a locally hostable LLM, combined with a state-of-the-art knowledge retrieval system, to provide up-to-date vulnerability insights without compromising data privacy. We set a new benchmark for static vulnerability analysis, offering a robust, privacy-conscious solution that bridges the gap between traditional scanners and advanced AI-driven analysis. Our evaluation demonstrates that incorporating SAST results into LLM analysis significantly improves detection accuracy, identifying vulnerabilities missed by conventional methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com