Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LLM-Cure: LLM-based Competitor User Review Analysis for Feature Enhancement (2409.15724v2)

Published 24 Sep 2024 in cs.SE, cs.AI, and cs.IR

Abstract: The exponential growth of the mobile app market underscores the importance of constant innovation and rapid response to user demands. As user satisfaction is paramount to the success of a mobile application (app), developers typically rely on user reviews, which represent user feedback that includes ratings and comments to identify areas for improvement. However, the sheer volume of user reviews poses challenges in manual analysis, necessitating automated approaches. Existing automated approaches either analyze only the target apps reviews, neglecting the comparison of similar features to competitors or fail to provide suggestions for feature enhancement. To address these gaps, we propose a LLM-based Competitive User Review Analysis for Feature Enhancement) (LLM-Cure), an approach powered by LLMs to automatically generate suggestion s for mobile app feature improvements. More specifically, LLM-Cure identifies and categorizes features within reviews by applying LLMs. When provided with a complaint in a user review, LLM-Cure curates highly rated (4 and 5 stars) reviews in competing apps related to the complaint and proposes potential improvements tailored to the target application. We evaluate LLM-Cure on 1,056,739 reviews of 70 popular Android apps. Our evaluation demonstrates that LLM-Cure significantly outperforms the state-of-the-art approaches in assigning features to reviews by up to 13% in F1-score, up to 16% in recall and up to 11% in precision. Additionally, LLM-Cure demonstrates its capability to provide suggestions for resolving user complaints. We verify the suggestions using the release notes that reflect the changes of features in the target mobile app. LLM-Cure achieves a promising average of 73% of the implementation of the provided suggestions.

Summary

We haven't generated a summary for this paper yet.