Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Contextualization of ASR with LLM using phonetic retrieval-based augmentation (2409.15353v1)

Published 11 Sep 2024 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: LLMs have shown superb capability of modeling multimodal signals including audio and text, allowing the model to generate spoken or textual response given a speech input. However, it remains a challenge for the model to recognize personal named entities, such as contacts in a phone book, when the input modality is speech. In this work, we start with a speech recognition task and propose a retrieval-based solution to contextualize the LLM: we first let the LLM detect named entities in speech without any context, then use this named entity as a query to retrieve phonetically similar named entities from a personal database and feed them to the LLM, and finally run context-aware LLM decoding. In a voice assistant task, our solution achieved up to 30.2% relative word error rate reduction and 73.6% relative named entity error rate reduction compared to a baseline system without contextualization. Notably, our solution by design avoids prompting the LLM with the full named entity database, making it highly efficient and applicable to large named entity databases.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube