Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
45 tokens/sec
GPT-5 Medium
37 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
103 tokens/sec
2000 character limit reached

UTrace: Poisoning Forensics for Private Collaborative Learning (2409.15126v1)

Published 23 Sep 2024 in cs.CR and cs.LG

Abstract: Privacy-preserving machine learning (PPML) enables multiple data owners to contribute their data privately to a set of servers that run a secure multi-party computation (MPC) protocol to train a joint ML model. In these protocols, the input data remains private throughout the training process, and only the resulting model is made available. While this approach benefits privacy, it also exacerbates the risks of data poisoning, where compromised data owners induce undesirable model behavior by contributing malicious datasets. Existing MPC mechanisms can mitigate certain poisoning attacks, but these measures are not exhaustive. To complement existing poisoning defenses, we introduce UTrace: a framework for User-level Traceback of poisoning attacks in PPML. Utrace computes user responsibility scores using gradient similarity metrics aggregated across the most relevant samples in an owner's dataset. UTrace is effective at low poisoning rates and is resilient to poisoning attacks distributed across multiple data owners, unlike existing unlearning-based methods. We introduce methods for checkpointing gradients with low storage overhead, enabling traceback in the absence of data owners at deployment time. We also design several optimizations that reduce traceback time and communication in MPC. We provide a comprehensive evaluation of UTrace across four datasets from three data modalities (vision, text, and malware) and show its effectiveness against 10 poisoning attacks.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.