Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
461 tokens/sec
Kimi K2 via Groq Premium
212 tokens/sec
2000 character limit reached

Rosen-Morse potential and gravitating kinks (2409.14761v1)

Published 23 Sep 2024 in hep-th and gr-qc

Abstract: We show that in a special type of two-dimensional dilaton-gravity-scalar model, where both the dilaton and the scalar matter fields have noncanonical kinetic terms, it is possible to construct kink solutions whose linear perturbation equation is a Schr\"odinger-like equation with Rosen-Morse potential. For this potential, eigenvalues and wave functions of the bound states, if had any, can be derived by using the standard shape invariance procedure. Depending on the values of the parameters, the stability potential can be reflective or reflectionless. There can be an arbitrary number of shape modes, but the zero mode is always absent.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.