Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

TransUKAN:Computing-Efficient Hybrid KAN-Transformer for Enhanced Medical Image Segmentation (2409.14676v2)

Published 23 Sep 2024 in eess.IV and cs.CV

Abstract: U-Net is currently the most widely used architecture for medical image segmentation. Benefiting from its unique encoder-decoder architecture and skip connections, it can effectively extract features from input images to segment target regions. The commonly used U-Net is typically based on convolutional operations or Transformers, modeling the dependencies between local or global information to accomplish medical image analysis tasks. However, convolutional layers, fully connected layers, and attention mechanisms used in this process introduce a significant number of parameters, often requiring the stacking of network layers to model complex nonlinear relationships, which can impact the training process. To address these issues, we propose TransUKAN. Specifically, we have improved the KAN to reduce memory usage and computational load. On this basis, we explored an effective combination of KAN, Transformer, and U-Net structures. This approach enhances the model's capability to capture nonlinear relationships by introducing only a small number of additional parameters and compensates for the Transformer structure's deficiency in local information extraction. We validated TransUKAN on multiple medical image segmentation tasks. Experimental results demonstrate that TransUKAN achieves excellent performance with significantly reduced parameters. The code will be available athttps://github.com/wuyanlin-wyl/TransUKAN.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com