Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
40 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
32 tokens/sec
GPT-4o
94 tokens/sec
DeepSeek R1 via Azure Premium
94 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
198 tokens/sec
2000 character limit reached

Robust Audio-Visual Speech Enhancement: Correcting Misassignments in Complex Environments with Advanced Post-Processing (2409.14554v2)

Published 22 Sep 2024 in eess.AS and cs.SD

Abstract: This paper addresses the prevalent issue of incorrect speech output in audio-visual speech enhancement (AVSE) systems, which is often caused by poor video quality and mismatched training and test data. We introduce a post-processing classifier (PPC) to rectify these erroneous outputs, ensuring that the enhanced speech corresponds accurately to the intended speaker. We also adopt a mixup strategy in PPC training to improve its robustness. Experimental results on the AVSE-challenge dataset show that integrating PPC into the AVSE model can significantly improve AVSE performance, and combining PPC with the AVSE model trained with permutation invariant training (PIT) yields the best performance. The proposed method substantially outperforms the baseline model by a large margin. This work highlights the potential for broader applications across various modalities and architectures, providing a promising direction for future research in this field.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.