Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
45 tokens/sec
GPT-5 Medium
37 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
91 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
103 tokens/sec
2000 character limit reached

Thinking in Granularity: Dynamic Quantization for Image Super-Resolution by Intriguing Multi-Granularity Clues (2409.14330v2)

Published 22 Sep 2024 in eess.IV and cs.CV

Abstract: Dynamic quantization has attracted rising attention in image super-resolution (SR) as it expands the potential of heavy SR models onto mobile devices while preserving competitive performance. Existing methods explore layer-to-bit configuration upon varying local regions, adaptively allocating the bit to each layer and patch. Despite the benefits, they still fall short in the trade-off of SR accuracy and quantization efficiency. Apart from this, adapting the quantization level for each layer individually can disturb the original inter-layer relationships, thus diminishing the representation capability of quantized models. In this work, we propose Granular-DQ, which capitalizes on the intrinsic characteristics of images while dispensing with the previous consideration for layer sensitivity in quantization. Granular-DQ conducts a multi-granularity analysis of local patches with further exploration of their information densities, achieving a distinctive patch-wise and layer-invariant dynamic quantization paradigm. Specifically, Granular-DQ initiates by developing a granularity-bit controller (GBC) to apprehend the coarse-to-fine granular representations of different patches, matching their proportional contribution to the entire image to determine the proper bit-width allocation. On this premise, we investigate the relation between bit-width and information density, devising an entropy-to-bit (E2B) mechanism that enables further fine-grained dynamic bit adaption of high-bit patches. Extensive experiments validate the superiority and generalization ability of Granular-DQ over recent state-of-the-art methods on various SR models. Code and supplementary statement can be found at \url{https://github.com/MmmingS/Granular-DQ.git}.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube