Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Tactile Neural De-rendering (2409.13923v1)

Published 20 Sep 2024 in cs.RO

Abstract: Tactile sensing has proven to be an invaluable tool for enhancing robotic perception, particularly in scenarios where visual data is limited or unavailable. However, traditional methods for pose estimation using tactile data often rely on intricate modeling of sensor mechanics or estimation of contact patches, which can be cumbersome and inherently deterministic. In this work, we introduce Tactile Neural De-rendering, a novel approach that leverages a generative model to reconstruct a local 3D representation of an object based solely on its tactile signature. By rendering the object as though perceived by a virtual camera embedded at the fingertip, our method provides a more intuitive and flexible representation of the tactile data. This 3D reconstruction not only facilitates precise pose estimation but also allows for the quantification of uncertainty, providing a robust framework for tactile-based perception in robotics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com