Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Good Idea or Not, Representation of LLM Could Tell (2409.13712v1)

Published 7 Sep 2024 in cs.CL and cs.AI

Abstract: In the ever-expanding landscape of academic research, the proliferation of ideas presents a significant challenge for researchers: discerning valuable ideas from the less impactful ones. The ability to efficiently evaluate the potential of these ideas is crucial for the advancement of science and paper review. In this work, we focus on idea assessment, which aims to leverage the knowledge of LLMs to assess the merit of scientific ideas. First, we investigate existing text evaluation research and define the problem of quantitative evaluation of ideas. Second, we curate and release a benchmark dataset from nearly four thousand manuscript papers with full texts, meticulously designed to train and evaluate the performance of different approaches to this task. Third, we establish a framework for quantifying the value of ideas by employing representations in a specific layer of LLMs. Experimental results show that the scores predicted by our method are relatively consistent with those of humans. Our findings suggest that the representations of LLMs hold more potential in quantifying the value of ideas than their generative outputs, demonstrating a promising avenue for automating the idea assessment process.

Summary

We haven't generated a summary for this paper yet.