Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Efficient Measurement-Driven Eigenenergy Estimation with Classical Shadows (2409.13691v2)

Published 20 Sep 2024 in quant-ph

Abstract: Quantum algorithms exploiting real-time evolution under a target Hamiltonian have demonstrated remarkable efficiency in extracting key spectral information. However, the broader potential of these methods, particularly beyond ground state calculations, is underexplored. In this work, we introduce the framework of multi-observable dynamic mode decomposition (MODMD), which combines the observable dynamic mode decomposition, a measurement-driven eigensolver tailored for near-term implementation, with classical shadow tomography. MODMD leverages random scrambling in the classical shadow technique to construct, with exponentially reduced resource requirements, a signal subspace that encodes rich spectral information. Notably, we replace typical Hadamard-test circuits with a protocol designed to predict low-rank observables, thus marking a new application of classical shadow tomography for predicting many low-rank observables. We establish theoretical guarantees on the spectral approximation from MODMD, taking into account distinct sources of error. In the ideal case, we prove that the spectral error scales as $\exp(- \Delta E t_{\rm max})$, where $\Delta E$ is the Hamiltonian spectral gap and $t_{\rm max}$ is the maximal simulation time. This analysis provides a rigorous justification of the rapid convergence observed across simulations. To demonstrate the utility of our framework, we consider its application to fundamental tasks, such as determining the low-lying, i.e. ground or excited, energies of representative many-body systems. Our work paves the path for efficient designs of measurement-driven algorithms on near-term and early fault-tolerant quantum devices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.