Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Keypoint Detection Technique for Image-Based Visual Servoing of Manipulators (2409.13668v1)

Published 20 Sep 2024 in cs.RO

Abstract: This paper introduces an innovative keypoint detection technique based on Convolutional Neural Networks (CNNs) to enhance the performance of existing Deep Visual Servoing (DVS) models. To validate the convergence of the Image-Based Visual Servoing (IBVS) algorithm, real-world experiments utilizing fiducial markers for feature detection are conducted before designing the CNN-based feature detector. To address the limitations of fiducial markers, the novel feature detector focuses on extracting keypoints that represent the corners of a more realistic object compared to fiducial markers. A dataset is generated from sample data captured by the camera mounted on the robot end-effector while the robot operates randomly in the task space. The samples are automatically labeled, and the dataset size is increased by flipping and rotation. The CNN model is developed by modifying the VGG-19 pre-trained on the ImageNet dataset. While the weights in the base model remain fixed, the fully connected layer's weights are updated to minimize the mean absolute error, defined based on the deviation of predictions from the real pixel coordinates of the corners. The model undergoes two modifications: replacing max-pooling with average-pooling in the base model and implementing an adaptive learning rate that decreases during epochs. These changes lead to a 50 percent reduction in validation loss. Finally, the trained model's reliability is assessed through k-fold cross-validation.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com