Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Fourier dimension of Mandelbrot multiplicative cascades (2409.13455v3)

Published 20 Sep 2024 in math.PR, math-ph, math.CA, and math.MP

Abstract: We investigate the Fourier dimension, $\dim_F\mu$, of Mandelbrot multiplicative cascade measures $\mu$ on the $d$-dimensional unit cube. We show that if $\mu$ is the cascade measure generated by a sub-exponential random variable then [\dim_F\mu=\min{2,\dim_2\mu}\,,] where $\dim_2\mu$ is the correlation dimension of $\mu$ and it has an explicit formula. For cascades on the circle $S\subset\mathbb{R}2$, we obtain [\dim_F\mu\ge\frac{\dim_2\mu}{2+\dim_2\mu}\,.]

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. E. Aïdékon. Convergence in law of the minimum of a branching random walk. Ann. Probab., 41(3A):1362–1426, 2013.
  2. J. Barral. Continuity of the multifractal spectrum of a random statistically self-similar measure. J. Theoret. Probab., 13(4):1027–1060, 2000.
  3. Gaussian multiplicative chaos and KPZ duality. Comm. Math. Phys., 323(2):451–485, 2013.
  4. Critical Mandelbrot cascades. Comm. Math. Phys., 325(2):685–711, 2014.
  5. I. Benjamini and O. Schramm. KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys., 289(2):653–662, 2009.
  6. Harmonic Analysis of Mandelbrot Cascades in the context of vector-valued measures. Preprint, available at arXiv:2409.13164.
  7. K. Falconer and X. Jin. Exact dimensionality and projection properties of Gaussian multiplicative chaos measures. Trans. Amer. Math. Soc., 372(4):2921–2957, 2019.
  8. K. J. Falconer and S. Troscheit. Box-counting dimension in one-dimensional random geometry of multiplicative cascades. Comm. Math. Phys., 399(1):57–83, 2023.
  9. C. Garban and V. Vargas. Harmonic analysis of Gaussian multiplicative chaos on the circle. Preprint, available at arXiv:2311.04027.
  10. L. Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts in Mathematics. Springer, New York, second edition, 2008.
  11. Y. Heurteaux. An introduction to Mandelbrot cascades. In New trends in applied harmonic analysis, Appl. Numer. Harmon. Anal., pages 67–105. Birkhäuser/Springer, Cham, 2016.
  12. How projections affect the dimension spectrum of fractal measures. Nonlinearity, 10(5):1031–1046, 1997.
  13. B. Jaffuel. The critical barrier for the survival of branching random walk with absorption. Ann. Inst. Henri Poincaré Probab. Stat., 48(4):989–1009, 2012.
  14. J.-P. Kahane. Fractals and random measures. Bull. Sci. Math., 117(1):153–159, 1993.
  15. J.-P. Kahane and J. Peyrière. Sur certaines martingales de Benoit Mandelbrot. Advances in Math., 22(2):131–145, 1976.
  16. R. Lyons. Seventy years of Rajchman measures. In Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), pages 363–377, 1995.
  17. T. Madaule. Convergence in law for the branching random walk seen from its tip. J. Theoret. Probab., 30(1):27–63, 2017.
  18. B. Mandelbrot. Intermittent turbulence in self similar cascades: divergence of high moments and dimension of carrier. J. Fluid Mech., 62:331–333, 1974.
  19. B. Mandelbrot. Intermittent turbulence and fractal dimension: kurtosis and the spectral exponent 5/3+B53𝐵5/3+B5 / 3 + italic_B. In Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975), volume Vol. 565 of Lecture Notes in Math., pages 121–145. Springer, Berlin-New York, 1976.
  20. P. Mattila. Fourier analysis and Hausdorff dimension, volume 150 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2015.
  21. D. Ryou. Near-optimal restriction estimates for Cantor sets on the parabola. Int. Math. Res. Not. IMRN, (6):5050–5099, 2024.
  22. T. Sahlsten. Fourier transforms and iterated function systems. Preprint, available at arXiv:2311.00585.
  23. P. Shmerkin and V. Suomala. Spatially independent martingales, intersections, and applications. Mem. Amer. Math. Soc., 251(1195):v+102, 2018.
  24. R. Vershynin. High-dimensional probability, volume 47 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2018. An introduction with applications in data science, With a foreword by Sara van de Geer.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.