Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 234 tok/s Pro
2000 character limit reached

Anticoncentration and state design of random tensor networks (2409.13023v2)

Published 19 Sep 2024 in quant-ph

Abstract: We investigate quantum random tensor network states where the bond dimensions scale polynomially with the system size, $N$. Specifically, we examine the delocalization properties of random Matrix Product States (RMPS) in the computational basis by deriving an exact analytical expression for the Inverse Participation Ratio (IPR) of any degree, applicable to both open and closed boundary conditions. For bond dimensions $\chi \sim \gamma N$, we determine the leading order of the associated overlaps probability distribution and demonstrate its convergence to the Porter-Thomas distribution, characteristic of Haar-random states, as $\gamma$ increases. Additionally, we provide numerical evidence for the frame potential, measuring the $2$-distance from the Haar ensemble, which confirms the convergence of random MPS to Haar-like behavior for $\chi \gg \sqrt{N}$. We extend this analysis to two-dimensional systems using random Projected Entangled Pair States (PEPS), where we similarly observe the convergence of IPRs to their Haar values for $\chi \gg \sqrt{N}$. These findings demonstrate that random tensor networks with bond dimensions scaling polynomially in the system size are fully Haar-anticoncentrated and approximate unitary designs, regardless of the spatial dimension.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube