Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Reward-Driven Image Segmentation in Automated Scanning Transmission Electron Microscopy Experiments (2409.12462v2)

Published 19 Sep 2024 in cond-mat.mtrl-sci, cs.HC, and cs.LG

Abstract: Automated experiments in scanning transmission electron microscopy (STEM) require rapid image segmentation to optimize data representation for human interpretation, decision-making, site-selective spectroscopies, and atomic manipulation. Currently, segmentation tasks are typically performed using supervised machine learning methods, which require human-labeled data and are sensitive to out-of-distribution drift effects caused by changes in resolution, sampling, or beam shape. Here, we operationalize and benchmark a recently proposed reward-driven optimization workflow for on-the fly image analysis in STEM. This unsupervised approach is much more robust, as it does not rely on human labels and is fully explainable. The explanatory feedback can help the human to verify the decision making and potentially tune the model by selecting the position along the Pareto frontier of reward functions. We establish the timing and effectiveness of this method, demonstrating its capability for real-time performance in high-throughput and dynamic automated STEM experiments. The reward driven approach allows to construct explainable robust analysis workflows and can be generalized to a broad range of image analysis tasks in electron and scanning probe microscopy and chemical imaging.

Summary

We haven't generated a summary for this paper yet.