Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
34 tokens/sec
GPT-4o
83 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
471 tokens/sec
Kimi K2 via Groq Premium
203 tokens/sec
2000 character limit reached

Expanding Expressivity in Transformer Models with MöbiusAttention (2409.12175v1)

Published 8 Sep 2024 in cs.LG and cs.AI

Abstract: Attention mechanisms and Transformer architectures have revolutionized NLP by enabling exceptional modeling of long-range dependencies and capturing intricate linguistic patterns. However, their inherent reliance on linear operations in the form of matrix multiplications limits their ability to fully capture inter-token relationships on their own. We propose M\"obiusAttention, a novel approach that integrates M\"obius transformations within the attention mechanism of Transformer-based models. M\"obius transformations are non-linear operations in spaces over complex numbers with the ability to map between various geometries. By incorporating these properties, M\"obiusAttention empowers models to learn more intricate geometric relationships between tokens and capture a wider range of information through complex-valued weight vectors. We build and pre-train a BERT and a RoFormer version enhanced with M\"obiusAttention, which we then finetune on the GLUE benchmark. We evaluate empirically our approach against the baseline BERT and RoFormer models on a range of downstream tasks. Our approach compares favorably against the baseline models, even with smaller number of parameters suggesting the enhanced expressivity of M\"obiusAttention. This research paves the way for exploring the potential of M\"obius transformations in the complex projective space to enhance the expressivity and performance of foundation models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets