Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-Augmented Frequency Estimation in Sliding Windows (2409.11516v1)

Published 17 Sep 2024 in cs.DS and cs.LG

Abstract: We show how to utilize machine learning approaches to improve sliding window algorithms for approximate frequency estimation problems, under the ``algorithms with predictions'' framework. In this dynamic environment, previous learning-augmented algorithms are less effective, since properties in sliding window resolution can differ significantly from the properties of the entire stream. Our focus is on the benefits of predicting and filtering out items with large next arrival times -- that is, there is a large gap until their next appearance -- from the stream, which we show improves the memory-accuracy tradeoffs significantly. We provide theorems that provide insight into how and by how much our technique can improve the sliding window algorithm, as well as experimental results using real-world data sets. Our work demonstrates that predictors can be useful in the challenging sliding window setting.

Summary

We haven't generated a summary for this paper yet.