Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of a unique solution to parametrized systems of generalized polynomial equations (2409.11288v1)

Published 17 Sep 2024 in math.AG

Abstract: We consider solutions to parametrized systems of generalized polynomial equations (with real exponents) in $n$ positive variables, involving $m$ monomials with positive parameters; that is, $x\in\mathbb{R}n_>$ such that ${A \, (c \circ xB)=0}$ with coefficient matrix $A\in\mathbb{R}{l \times m}$, exponent matrix $B\in\mathbb{R}{n \times m}$, parameter vector $c\in\mathbb{R}m_>$, and componentwise product $\circ$. As our main result, we characterize the existence of a unique solution (modulo an exponential manifold) for all parameters in terms of the relevant geometric objects of the polynomial system, namely the $\textit{coefficient polytope}$ and the $\textit{monomial dependency subspace}$. We show that unique existence is equivalent to the bijectivity of a certain moment/power map, and we characterize the bijectivity of this map using Hadamard's global inversion theorem. Furthermore, we provide sufficient conditions in terms of sign vectors of the geometric objects, thereby obtaining a multivariate Descartes' rule of signs for exactly one solution.

Citations (2)

Summary

We haven't generated a summary for this paper yet.