Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Increasing faithfulness in human-human dialog summarization with Spoken Language Understanding tasks (2409.10070v1)

Published 16 Sep 2024 in cs.CL and cs.AI

Abstract: Dialogue summarization aims to provide a concise and coherent summary of conversations between multiple speakers. While recent advancements in LLMs have enhanced this process, summarizing dialogues accurately and faithfully remains challenging due to the need to understand speaker interactions and capture relevant information. Indeed, abstractive models used for dialog summarization may generate summaries that contain inconsistencies. We suggest using the semantic information proposed for performing Spoken Language Understanding (SLU) in human-machine dialogue systems for goal-oriented human-human dialogues to obtain a more semantically faithful summary regarding the task. This study introduces three key contributions: First, we propose an exploration of how incorporating task-related information can enhance the summarization process, leading to more semantically accurate summaries. Then, we introduce a new evaluation criterion based on task semantics. Finally, we propose a new dataset version with increased annotated data standardized for research on task-oriented dialogue summarization. The study evaluates these methods using the DECODA corpus, a collection of French spoken dialogues from a call center. Results show that integrating models with task-related information improves summary accuracy, even with varying word error rates.

Summary

We haven't generated a summary for this paper yet.