Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Rotation Averaging with Constrained Reweighting Deep Matrix Factorization (2409.09790v1)

Published 15 Sep 2024 in cs.CV, cs.AI, and cs.RO

Abstract: Multiple rotation averaging plays a crucial role in computer vision and robotics domains. The conventional optimization-based methods optimize a nonlinear cost function based on certain noise assumptions, while most previous learning-based methods require ground truth labels in the supervised training process. Recognizing the handcrafted noise assumption may not be reasonable in all real-world scenarios, this paper proposes an effective rotation averaging method for mining data patterns in a learning manner while avoiding the requirement of labels. Specifically, we apply deep matrix factorization to directly solve the multiple rotation averaging problem in unconstrained linear space. For deep matrix factorization, we design a neural network model, which is explicitly low-rank and symmetric to better suit the background of multiple rotation averaging. Meanwhile, we utilize a spanning tree-based edge filtering to suppress the influence of rotation outliers. What's more, we also adopt a reweighting scheme and dynamic depth selection strategy to further improve the robustness. Our method synthesizes the merit of both optimization-based and learning-based methods. Experimental results on various datasets validate the effectiveness of our proposed method.

Summary

We haven't generated a summary for this paper yet.