Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian is All You Need: A Unified Framework for Solving Inverse Problems via Diffusion Posterior Sampling (2409.08906v2)

Published 13 Sep 2024 in eess.IV and cs.CV

Abstract: Diffusion models can generate a variety of high-quality images by modeling complex data distributions. Trained diffusion models can also be very effective image priors for solving inverse problems. Most of the existing diffusion-based methods integrate data consistency steps by approximating the likelihood function within the diffusion reverse sampling process. In this paper, we show that the existing approximations are either insufficient or computationally inefficient. To address these issues, we propose a unified likelihood approximation method that incorporates a covariance correction term to enhance the performance and avoids propagating gradients through the diffusion model. The correction term, when integrated into the reverse diffusion sampling process, achieves better convergence towards the true data posterior for selected distributions and improves performance on real-world natural image datasets. Furthermore, we present an efficient way to factorize and invert the covariance matrix of the likelihood function for several inverse problems. Our comprehensive experiments demonstrate the effectiveness of our method over several existing approaches. Code available at https://github.com/CSIPlab/CoDPS.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com