Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Social Opinions Prediction Utilizes Fusing Dynamics Equation with LLM-based Agents (2409.08717v4)

Published 13 Sep 2024 in cs.SI and cs.CY

Abstract: In the context where social media emerges as a pivotal platform for social movements and shaping public opinion, accurately simulating and predicting the dynamics of user opinions is of significant importance. Such insights are vital for understanding social phenomena, informing policy decisions, and guiding public opinion. Unfortunately, traditional algorithms based on idealized models and disregarding social data often fail to capture the complexity and nuance of real-world social interactions. This study proposes the Fusing Dynamics Equation-LLM (FDE-LLM) algorithm. This innovative approach aligns the actions and evolution of opinions in LLMs with the real-world data on social networks. The FDE-LLM devides users into two roles: opinion leaders and followers. Opinion leaders use LLM for role-playing and employ Cellular Automata(CA) to constrain opinion changes. In contrast, opinion followers are integrated into a dynamic system that combines the CA model with the Susceptible-Infectious-Recovered (SIR) model. This innovative design significantly improves the accuracy of the simulation. Our experiments utilized four real-world datasets from Weibo. The result demonstrates that the FDE-LLM significantly outperforms traditional Agent-Based Modeling (ABM) algorithms and LLM-based algorithms. Additionally, our algorithm accurately simulates the decay and recovery of opinions over time, underscoring LLMs potential to revolutionize the understanding of social media dynamics.

Summary

We haven't generated a summary for this paper yet.