Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When Context Leads but Parametric Memory Follows in Large Language Models (2409.08435v4)

Published 13 Sep 2024 in cs.CL and cs.AI

Abstract: LLMs have demonstrated remarkable progress in leveraging diverse knowledge sources. This study investigates how nine widely used LLMs allocate knowledge between local context and global parameters when answering open-ended questions in knowledge-consistent scenarios. We introduce a novel dataset, WikiAtomic, and systematically vary context sizes to analyze how LLMs prioritize and utilize the provided information and their parametric knowledge in knowledge-consistent scenarios. Additionally, we also study their tendency to hallucinate under varying context sizes. Our findings reveal consistent patterns across models, including a consistent reliance on both contextual (around 70%) and parametric (around 30%) knowledge, and a decrease in hallucinations with increasing context. These insights highlight the importance of more effective context organization and developing models that use input more deterministically for robust performance.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com