Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparative Study of Long Short-Term Memory (LSTM) and Quantum Long Short-Term Memory (QLSTM): Prediction of Stock Market Movement (2409.08297v1)

Published 4 Sep 2024 in q-fin.ST, cs.AI, cs.LG, and quant-ph

Abstract: In recent years, financial analysts have been trying to develop models to predict the movement of a stock price index. The task becomes challenging in vague economic, social, and political situations like in Pakistan. In this study, we employed efficient models of machine learning such as long short-term memory (LSTM) and quantum long short-term memory (QLSTM) to predict the Karachi Stock Exchange (KSE) 100 index by taking monthly data of twenty-six economic, social, political, and administrative indicators from February 2004 to December 2020. The comparative results of LSTM and QLSTM predicted values of the KSE 100 index with the actual values suggested QLSTM a potential technique to predict stock market trends.

Summary

We haven't generated a summary for this paper yet.