Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Amortized Stabilizer Rényi Entropy of Quantum Dynamics (2409.06659v1)

Published 10 Sep 2024 in quant-ph

Abstract: Unraveling the secrets of how much nonstabilizerness a quantum dynamic can generate is crucial for harnessing the power of magic states, the essential resources for achieving quantum advantage and realizing fault-tolerant quantum computation. In this work, we introduce the amortized $\alpha$-stabilizer R\'enyi entropy, a magic monotone for unitary operations that quantifies the nonstabilizerness generation capability of quantum dynamics. Amortization is key in quantifying the magic of quantum dynamics, as we reveal that nonstabilizerness generation can be enhanced by prior nonstabilizerness in input states when considering the $\alpha$-stabilizer R\'enyi entropy, while this is not the case for robustness of magic or stabilizer extent. We demonstrate the versatility of the amortized $\alpha$-stabilizer R\'enyi entropy in investigating the nonstabilizerness resources of quantum dynamics of computational and fundamental interest. In particular, we establish improved lower bounds on the $T$-count of quantum Fourier transforms and the quantum evolutions of one-dimensional Heisenberg Hamiltonians, showcasing the power of this tool in studying quantum advantages and the corresponding cost in fault-tolerant quantum computation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com