Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normalized ground state solutions of Schrödinger-KdV system in $\mathbb{R}^3$ (2409.06528v1)

Published 10 Sep 2024 in math.AP

Abstract: In this paper, we study the coupled Schr\"odinger-KdV system \begin{align*} \begin{cases} -\Delta u +\lambda_1 u=u3+\beta uv~~&\text{in}\mathbb{R}{3}, \-\Delta v +\lambda_2 v=\frac{1}{2}v2+\frac{1}{2}\beta u2&\text{in}~~\mathbb{R}{3} \end{cases} \end{align*} subject to the mass constraints \begin{equation*} \int_{\mathbb{R}{3}}|u|2 dx=a,\quad \int_{\mathbb{R}{3}}|v|2 dx=b, \end{equation*} where $a, b>0$ are given constants, $\beta>0$, and the frequencies $\lambda_1,\lambda_2$ arise as Lagrange multipliers. The system exhibits $L2$-supercritical growth. Using a novel constraint minimization approach, we demonstrate the existence of a local minimum solution to the system. Furthermore, we establish the existence of normalized ground state solutions.

Summary

We haven't generated a summary for this paper yet.