Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 31 TPS
GPT-5 High 29 TPS Pro
GPT-4o 96 TPS
GPT OSS 120B 475 TPS Pro
Kimi K2 194 TPS Pro
2000 character limit reached

On a shrink-and-expand technique for symmetric block eigensolvers (2409.05572v2)

Published 9 Sep 2024 in math.NA and cs.NA

Abstract: In symmetric block eigenvalue algorithms, such as the subspace iteration algorithm and the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm, a large block size is often employed to achieve robustness and rapid convergence. However, using a large block size also increases the computational cost. Traditionally, the block size is typically reduced after convergence of some eigenpairs, known as deflation. In this work, we propose a non-deflation-based, more aggressive technique, where the block size is adjusted dynamically during the algorithm. This technique can be applied to a wide range of block eigensolvers, reducing computational cost without compromising convergence speed. We present three adaptive strategies for adjusting the block size, and apply them to four well-known eigensolvers as examples. Detailed theoretical analysis and numerical experiments are provided to illustrate the efficiency of the proposed technique. In practice, an overall acceleration of 20% to 30% is observed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.