Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stability and rigidity of 3-Lie algebra morphisms

Published 8 Sep 2024 in math.RA | (2409.05041v1)

Abstract: In this paper, first we use the higher derived brackets to construct an $L_\infty$-algebra, whose Maurer-Cartan elements are $3$-Lie algebra morphisms. Using the differential in the $L_\infty$-algebra that govern deformations of the morphism, we give the cohomology of a $3$-Lie algebra morphism. Then we study the rigidity and stability of $3$-Lie algebra morphisms using the established cohomology theory. In particular, we show that if the first cohomology group is trivial, then the morphism is rigid; if the second cohomology group is trivial, then the morphism is stable. Finally, we study the stability of $3$-Lie subalgebras similarly.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.