Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Quantum percolation on Lieb Lattices (2409.04610v1)

Published 6 Sep 2024 in cond-mat.stat-mech

Abstract: We theoretically investigate the quantum percolation problem on Lieb lattices in two and three dimensions. We study the statistics of the energy levels through random matrix theory, and determine the level spacing distributions, which, with the aid of finite-size scaling theory, allows us to obtain accurate estimates for site- and bond percolation thresholds and critical exponents. Our numerical investigation supports a localized-delocalized transition at finite threshold, which decreases as the average coordination number increases. The precise determination of the localization length exponent enables us to claim that quantum site- and bond-percolation problems on Lieb lattices belong to the same universality class, with $\nu$ decreasing with lattice dimensionality, $d$, similarly to the classical percolation problem. In addition, we verify that, in three dimensions, quantum percolation on Lieb lattices belongs to the same universality class as the Anderson impurity model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.