Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Data-Efficient Generation for Dataset Distillation (2409.03929v1)

Published 5 Sep 2024 in cs.CV

Abstract: While deep learning techniques have proven successful in image-related tasks, the exponentially increased data storage and computation costs become a significant challenge. Dataset distillation addresses these challenges by synthesizing only a few images for each class that encapsulate all essential information. Most current methods focus on matching. The problems lie in the synthetic images not being human-readable and the dataset performance being insufficient for downstream learning tasks. Moreover, the distillation time can quickly get out of bounds when the number of synthetic images per class increases even slightly. To address this, we train a class conditional latent diffusion model capable of generating realistic synthetic images with labels. The sampling time can be reduced to several tens of images per seconds. We demonstrate that models can be effectively trained using only a small set of synthetic images and evaluated on a large real test set. Our approach achieved rank (1) in The First Dataset Distillation Challenge at ECCV 2024 on the CIFAR100 and TinyImageNet datasets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets