Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Periodic Pitman transforms and jointly invariant measures (2409.03613v1)

Published 5 Sep 2024 in math.PR

Abstract: We construct explicit jointly invariant measures for the periodic KPZ equation (and therefore also the stochastic Burgers' and stochastic heat equations) for general slope parameters and prove their uniqueness via a one force--one solution principle. The measures are given by polymer-like transforms of independent Brownian bridges. We describe several properties and limits of these measures, including an extension to a continuous process in the slope parameter that we term the periodic KPZ horizon. As an application of our construction, we prove a Gaussian process limit theorem with an explicit covariance function for the long-time height function fluctuations of the periodic KPZ equation when started from varying slopes. In connection with this, we conjecture a formula for the fluctuations of cumulants of the endpoint distribution for the periodic continuum directed random polymer. To prove joint invariance, we address the analogous problem for a semi-discrete system of SDEs related to the periodic O'Connell-Yor polymer model and then perform a scaling limit of the model and jointly invariant measures. For the semi-discrete system, we demonstrate a bijection that maps our systems of SDEs to another system with product invariant measure. Inverting the map on this product measure yields our invariant measures. This map relates to a periodic version of the discrete geometric Pitman transform that we introduce and probe. As a by-product of this, we show that the jointly invariant measures for a periodic version of the inverse-gamma polymer are the same as those for the O'Connell-Yor polymer.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube