Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Reward Augmentation in Reinforcement Learning for Testing Distributed Systems (2409.02137v1)

Published 2 Sep 2024 in cs.SE, cs.DC, cs.LG, and cs.PL

Abstract: Bugs in popular distributed protocol implementations have been the source of many downtimes in popular internet services. We describe a randomized testing approach for distributed protocol implementations based on reinforcement learning. Since the natural reward structure is very sparse, the key to successful exploration in reinforcement learning is reward augmentation. We show two different techniques that build on one another. First, we provide a decaying exploration bonus based on the discovery of new states -- the reward decays as the same state is visited multiple times. The exploration bonus captures the intuition from coverage-guided fuzzing of prioritizing new coverage points; in contrast to other schemes, we show that taking the maximum of the bonus and the Q-value leads to more effective exploration. Second, we provide waypoints to the algorithm as a sequence of predicates that capture interesting semantic scenarios. Waypoints exploit designer insight about the protocol and guide the exploration to ``interesting'' parts of the state space. Our reward structure ensures that new episodes can reliably get to deep interesting states even without execution caching. We have implemented our algorithm in Go. Our evaluation on three large benchmarks (RedisRaft, Etcd, and RSL) shows that our algorithm can significantly outperform baseline approaches in terms of coverage and bug finding.

Summary

We haven't generated a summary for this paper yet.