Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Recognition of Schrodinger cat state based on CNN (2409.02132v1)

Published 2 Sep 2024 in quant-ph and cs.LG

Abstract: We applied convolutional neural networks to the classification of cat states and coherent states. Initially, we generated datasets of Schrodinger cat states and coherent states from nonlinear processes and preprocessed these datasets. Subsequently, we constructed both LeNet and ResNet network architectures, adjusting parameters such as convolution kernels and strides to optimal values. We then trained both LeNet and ResNet on the training sets. The loss function values indicated that ResNet performs better in classifying cat states and coherent states. Finally, we evaluated the trained models on the test sets, achieving an accuracy of 97.5% for LeNet and 100% for ResNet. We evaluated cat states and coherent states with different {\alpha}, demonstrating a certain degree of generalization capability. The results show that LeNet may mistakenly recognize coherent states as cat states without coherent features, while ResNet provides a feasible solution to the problem of mistakenly recognizing cat states and coherent states by traditional neural networks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com