Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Foundations of Large Language Model Compression -- Part 1: Weight Quantization (2409.02026v2)

Published 3 Sep 2024 in cs.LG and cs.CL

Abstract: In recent years, compression of LLMs has emerged as an important problem to enable LLM deployment on resource-constrained devices, reduce computational costs, and mitigate the environmental footprint of large-scale AI infrastructure. In this paper, we lay down the foundation for LLM quantization from a convex optimization perspective and propose a quantization technique that builds on this foundation for optimum quantization outcomes. Our quantization framework, CVXQ, scales to models containing hundreds of billions of weight parameters and provides users with the flexibility to compress models to any specified model size, post-training. A reference implementation of CVXQ can be obtained from github.com/seannz/cvxq.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com