HATT: Hamiltonian Adaptive Ternary Tree for Optimizing Fermion-to-Qubit Mapping (2409.02010v2)
Abstract: This paper introduces the Hamiltonian-Adaptive Ternary Tree (HATT) framework to compile optimized Fermion-to-qubit mapping for specific Fermionic Hamiltonians. In the simulation of Fermionic quantum systems, efficient Fermion-to-qubit mapping plays a critical role in transforming the Fermionic system into a qubit system. HATT utilizes ternary tree mapping and a bottom-up construction procedure to generate Hamiltonian aware Fermion-to-qubit mapping to reduce the Pauli weight of the qubit Hamiltonian, resulting in lower quantum simulation circuit overhead. Additionally, our optimizations retain the important vacuum state preservation property in our Fermion-to-qubit mapping and reduce the complexity of our algorithm from $O(N4)$ to $O(N3)$. Evaluations and simulations of various Fermionic systems demonstrate $5\sim20\%$ reduction in Pauli weight, gate count, and circuit depth, alongside excellent scalability to larger systems. Experiments on the Ionq quantum computer also show the advantages of our approach in noise resistance in quantum simulations.
- Amazon Web Services, “Amazon Braket,” 2020. [Online]. Available: https://aws.amazon.com/braket/
- S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme, “Tapering off qubits to simulate fermionic hamiltonians,” 2017.
- S. B. Bravyi and A. Y. Kitaev, “Fermionic quantum computation,” Annals of Physics, vol. 298, no. 1, pp. 210–226, 2002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0003491602962548
- R. W. Chien, S. Xue, T. S. Hardikar, K. Setia, and J. D. Whitfield, “Analysis of superfast encoding performance for electronic structure simulations,” Physical Review A, vol. 100, no. 3, sep 2019. [Online]. Available: https://doi.org/10.1103%2Fphysreva.100.032337
- V. Cirigliano, S. Sen, and Y. Yamauchi, “Neutrino many-body flavor evolution: the full hamiltonian,” 2024. [Online]. Available: https://arxiv.org/abs/2404.16690
- A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and S. Sivarajah, “Phase gadget synthesis for shallow circuits,” Electronic Proceedings in Theoretical Computer Science, vol. 318, pp. 213–228, may 2020. [Online]. Available: https://doi.org/10.4204%2Feptcs.318.13
- A. Cowtan, W. Simmons, and R. Duncan, “A generic compilation strategy for the unitary coupled cluster ansatz,” 2020. [Online]. Available: https://doi.org/10.48550/arXiv.2007.10515
- C. Developers, “Cirq,” Jul. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.8161252
- T. Q. N. developers and contributors, “Qiskit nature 0.6.0,” Apr. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.7828768
- P. A. M. Dirac and N. H. D. Bohr, “The quantum theory of the emission and absorption of radiation,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 114, no. 767, pp. 243–265, 1927. [Online]. Available: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1927.0039
- R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics, vol. 21, no. 6, pp. 467–488, Jun 1982. [Online]. Available: https://doi.org/10.1007/BF02650179
- P. D. Group, R. L. Workman, V. D. Burkert, V. Crede, E. Klempt, U. Thoma, L. Tiator, K. Agashe, G. Aielli, B. C. Allanach, C. Amsler, M. Antonelli, E. C. Aschenauer, D. M. Asner, H. Baer, S. Banerjee, R. M. Barnett, L. Baudis, C. W. Bauer, J. J. Beatty, V. I. Belousov, J. Beringer, A. Bettini, O. Biebel, K. M. Black, E. Blucher, R. Bonventre, V. V. Bryzgalov, O. Buchmuller, M. A. Bychkov, R. N. Cahn, M. Carena, A. Ceccucci, A. Cerri, R. S. Chivukula, G. Cowan, K. Cranmer, O. Cremonesi, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvêa, T. DeGrand, P. de Jong, S. Demers, B. A. Dobrescu, M. D’Onofrio, M. Doser, H. K. Dreiner, P. Eerola, U. Egede, S. Eidelman, A. X. El-Khadra, J. Ellis, S. C. Eno, J. Erler, V. V. Ezhela, W. Fetscher, B. D. Fields, A. Freitas, H. Gallagher, Y. Gershtein, T. Gherghetta, M. C. Gonzalez-Garcia, M. Goodman, C. Grab, A. V. Gritsan, C. Grojean, D. E. Groom, M. Grünewald, A. Gurtu, T. Gutsche, H. E. Haber, M. Hamel, C. Hanhart, S. Hashimoto, Y. Hayato, A. Hebecker, S. Heinemeyer, J. J. Hernández-Rey, K. Hikasa, J. Hisano, A. Höcker, J. Holder, L. Hsu, J. Huston, T. Hyodo, A. Ianni, M. Kado, M. Karliner, U. F. Katz, M. Kenzie, V. A. Khoze, S. R. Klein, F. Krauss, M. Kreps, P. Križan, B. Krusche, Y. Kwon, O. Lahav, J. Laiho, L. P. Lellouch, J. Lesgourgues, A. R. Liddle, Z. Ligeti, C.-J. Lin, C. Lippmann, T. M. Liss, L. Littenberg, C. Lourenço, K. S. Lugovsky, S. B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A. V. Manohar, W. J. Marciano, A. Masoni, J. Matthews, U.-G. Meißner, I.-A. Melzer-Pellmann, M. Mikhasenko, D. J. Miller, D. Milstead, R. E. Mitchell, K. Mönig, P. Molaro, F. Moortgat, M. Moskovic, K. Nakamura, M. Narain, P. Nason, S. Navas, A. Nelles, M. Neubert, P. Nevski, Y. Nir, K. A. Olive, C. Patrignani, J. A. Peacock, V. A. Petrov, E. Pianori, A. Pich, A. Piepke, F. Pietropaolo, A. Pomarol, S. Pordes, S. Profumo, A. Quadt, K. Rabbertz, J. Rademacker, G. Raffelt, M. Ramsey-Musolf, B. N. Ratcliff, P. Richardson, A. Ringwald, D. J. Robinson, S. Roesler, S. Rolli, A. Romaniouk, L. J. Rosenberg, J. L. Rosner, G. Rybka, M. G. Ryskin, R. A. Ryutin, Y. Sakai, S. Sarkar, F. Sauli, O. Schneider, S. Schönert, K. Scholberg, A. J. Schwartz, J. Schwiening, D. Scott, F. Sefkow, U. Seljak, V. Sharma, S. R. Sharpe, V. Shiltsev, G. Signorelli, M. Silari, F. Simon, T. Sjöstrand, P. Skands, T. Skwarnicki, G. F. Smoot, A. Soffer, M. S. Sozzi, S. Spanier, C. Spiering, A. Stahl, S. L. Stone, Y. Sumino, M. J. Syphers, F. Takahashi, M. Tanabashi, J. Tanaka, M. Taševský, K. Terao, K. Terashi, J. Terning, R. S. Thorne, M. Titov, N. P. Tkachenko, D. R. Tovey, K. Trabelsi, P. Urquijo, G. Valencia, R. Van de Water, N. Varelas, G. Venanzoni, L. Verde, I. Vivarelli, P. Vogel, W. Vogelsang, V. Vorobyev, S. P. Wakely, W. Walkowiak, C. W. Walter, D. Wands, D. H. Weinberg, E. J. Weinberg, N. Wermes, M. White, L. R. Wiencke, S. Willocq, C. G. Wohl, C. L. Woody, W.-M. Yao, M. Yokoyama, R. Yoshida, G. Zanderighi, G. P. Zeller, O. V. Zenin, R.-Y. Zhu, S.-L. Zhu, F. Zimmermann, and P. A. Zyla, “Review of Particle Physics,” Progress of Theoretical and Experimental Physics, vol. 2022, no. 8, p. 083C01, 08 2022. [Online]. Available: https://doi.org/10.1093/ptep/ptac097
- K. Gui, T. Tomesh, P. Gokhale, Y. Shi, F. T. Chong, M. Martonosi, and M. Suchara, “Term grouping and travelling salesperson for digital quantum simulation,” 2021. [Online]. Available: https://doi.org/10.48550/arXiv.2001.05983
- M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer, “Improving quantum algorithms for quantum chemistry,” Quantum Info. Comput., vol. 15, no. 1–2, p. 1–21, jan 2015. [Online]. Available: https://doi.org/10.48550/arXiv.1403.1539
- W. Hu, H. An, Z. Guo, Q. Jiang, X. Qin, J. Chen, W. Jia, C. Yang, Z. Luo, J. Li, W. Wu, G. Tan, D. Jia, Q. Lu, F. Liu, M. Tian, F. Li, Y. Huang, L. Wang, S. Liu, and J. Yang, “2.5 million-atom ab initio electronic-structure simulation of complex metallic heterostructures with dgdft,” in SC22: International Conference for High Performance Computing, Networking, Storage and Analysis, 2022, pp. 1–13.
- A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman, J. Gacon, S. Martiel, P. D. Nation, L. S. Bishop, A. W. Cross, B. R. Johnson, and J. M. Gambetta, “Quantum computing with Qiskit,” 2024.
- Z. Jiang, A. Kalev, W. Mruczkiewicz, and H. Neven, “Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning,” Quantum, vol. 4, p. 276, Jun. 2020. [Online]. Available: http://dx.doi.org/10.22331/q-2020-06-04-276
- P. Jordan and E. Wigner, “Über das paulische äquivalenzverbot,” Zeitschrift für Physik, vol. 47, no. 9, pp. 631–651, Sep 1928. [Online]. Available: https://doi.org/10.1007/BF01331938
- S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E. E. Bolton, “PubChem 2023 update,” Nucleic Acids Research, vol. 51, no. D1, pp. D1373–D1380, 10 2022. [Online]. Available: https://doi.org/10.1093/nar/gkac956
- G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “Paulihedral: a generalized block-wise compiler optimization framework for quantum simulation kernels,” in Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’22. New York, NY, USA: Association for Computing Machinery, 2022, p. 554–569. [Online]. Available: https://doi.org/10.1145/3503222.3507715
- Y. Liu, S. Che, J. Zhou, Y. Shi, and G. Li, “Fermihedral: On the optimal compilation for fermion-to-qubit encoding,” in Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3, ser. ASPLOS ’24. New York, NY, USA: Association for Computing Machinery, 2024, p. 382–397. [Online]. Available: https://doi.org/10.1145/3620666.3651371
- A. Miller, Z. Zimborás, S. Knecht, S. Maniscalco, and G. García-Pérez, “Bonsai algorithm: Grow your own fermion-to-qubit mappings,” PRX Quantum, vol. 4, no. 3, Aug. 2023. [Online]. Available: http://dx.doi.org/10.1103/PRXQuantum.4.030314
- A. Molavi, A. Xu, M. Diges, L. Pick, S. Tannu, and A. Albarghouthi, “Qubit Mapping and Routing via MaxSAT,” Aug. 2022, arXiv:2208.13679 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2208.13679
- P. Murali, J. M. Baker, A. J. Abhari, F. T. Chong, and M. Martonosi, “Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers,” 2019. [Online]. Available: https://doi.org/10.48550/arXiv.1901.11054
- Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, “Automated optimization of large quantum circuits with continuous parameters,” npj Quantum Information, vol. 4, no. 1, may 2018. [Online]. Available: https://doi.org/10.1038%2Fs41534-018-0072-4
- W. Pauli, “Über den zusammenhang des abschlusses der elektronengruppen im atom mit der komplexstruktur der spektren,” Zeitschrift für Physik, vol. 31, no. 1, pp. 765–783, Feb 1925. [Online]. Available: https://doi.org/10.1007/BF02980631
- K. Setia, S. Bravyi, A. Mezzacapo, and J. D. Whitfield, “Superfast encodings for fermionic quantum simulation,” Phys. Rev. Res., vol. 1, p. 033033, Oct 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevResearch.1.033033
- S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t—ket⟩: a retargetable compiler for nisq devices,” Quantum Science and Technology, vol. 6, no. 1, p. 014003, nov 2020. [Online]. Available: https://dx.doi.org/10.1088/2058-9565/ab8e92
- M. Soeken and M. K. Thomsen, “White dots do matter: Rewriting reversible logic circuits,” in Proceedings of the 5th International Conference on Reversible Computation, ser. RC’13. Berlin, Heidelberg: Springer-Verlag, 2013, p. 196–208. [Online]. Available: https://doi.org/10.1007/978-3-642-38986-3_16
- Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K.-L. Chan, “Pyscf: the python-based simulations of chemistry framework,” WIREs Computational Molecular Science, vol. 8, no. 1, p. e1340, 2018. [Online]. Available: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1340
- H. F. Trotter, “On the product of semi-groups of operators,” Proceedings of the American Mathematical Society, vol. 10, no. 4, pp. 545–551, 1959. [Online]. Available: http://www.jstor.org/stable/2033649
- A. M. van de Griend and R. Duncan, “Architecture-aware synthesis of phase polynomials for nisq devices,” 2020. [Online]. Available: https://doi.org/10.4204/EPTCS.394.8
- H. F. Trotter, “On the product of semi-groups of operators,” Proceedings of the American Mathematical Society, vol. 10, no. 4, pp. 545–551, 1959. [Online]. Available: http://www.jstor.org/stable/2033649
- E. van den Berg and K. Temme, “Circuit optimization of hamiltonian simulation by simultaneous diagonalization of pauli clusters,” Quantum, vol. 4, p. 322, sep 2020. [Online]. Available: https://doi.org/10.22331%2Fq-2020-09-12-322
- E. van den Berg and K. Temme, “Circuit optimization of hamiltonian simulation by simultaneous diagonalization of pauli clusters,” Quantum, vol. 4, p. 322, sep 2020. [Online]. Available: https://doi.org/10.22331%2Fq-2020-09-12-322