Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

THInC: A Theory-Driven Framework for Computational Humor Detection (2409.01232v1)

Published 2 Sep 2024 in cs.CL

Abstract: Humor is a fundamental aspect of human communication and cognition, as it plays a crucial role in social engagement. Although theories about humor have evolved over centuries, there is still no agreement on a single, comprehensive humor theory. Likewise, computationally recognizing humor remains a significant challenge despite recent advances in LLMs. Moreover, most computational approaches to detecting humor are not based on existing humor theories. This paper contributes to bridging this long-standing gap between humor theory research and computational humor detection by creating an interpretable framework for humor classification, grounded in multiple humor theories, called THInC (Theory-driven Humor Interpretation and Classification). THInC ensembles interpretable GA2M classifiers, each representing a different humor theory. We engineered a transparent flow to actively create proxy features that quantitatively reflect different aspects of theories. An implementation of this framework achieves an F1 score of 0.85. The associative interpretability of the framework enables analysis of proxy efficacy, alignment of joke features with theories, and identification of globally contributing features. This paper marks a pioneering effort in creating a humor detection framework that is informed by diverse humor theories and offers a foundation for future advancements in theory-driven humor classification. It also serves as a first step in automatically comparing humor theories in a quantitative manner.

Citations (2)

Summary

We haven't generated a summary for this paper yet.