Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On tail inference in iid settings with nonnegative extreme value index (2409.00906v1)

Published 2 Sep 2024 in math.ST and stat.TH

Abstract: In extreme value inference it is a fundamental problem how the target value is required to be extreme by the extreme value theory. In iid settings this study both theoretically and numerically compares tail estimators, which are based on either or both of the extreme value theory and the nonparametric smoothing. This study considers tail probability estimation and mean excess function estimation. This study assumes that the extreme value index of the underlying distribution is nonnegative. Specifically, the Hall class or the Weibull class of distributions is supposed in order to obtain the convergence rates of the estimators. This study investigates the nonparametric kernel type estimators, the fitting estimators to the generalized Pareto distribution and the plug-in estimators of the Hall distribution, which was proposed by Hall and Weissman (1997). In simulation studies the mean squared errors of the estimators in some finite sample cases are compared.

Summary

We haven't generated a summary for this paper yet.