Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

A Noise and Edge extraction-based dual-branch method for Shallowfake and Deepfake Localization (2409.00896v1)

Published 2 Sep 2024 in cs.CV

Abstract: The trustworthiness of multimedia is being increasingly evaluated by advanced Image Manipulation Localization (IML) techniques, resulting in the emergence of the IML field. An effective manipulation model necessitates the extraction of non-semantic differential features between manipulated and legitimate sections to utilize artifacts. This requires direct comparisons between the two regions.. Current models employ either feature approaches based on handcrafted features, convolutional neural networks (CNNs), or a hybrid approach that combines both. Handcrafted feature approaches presuppose tampering in advance, hence restricting their effectiveness in handling various tampering procedures, but CNNs capture semantic information, which is insufficient for addressing manipulation artifacts. In order to address these constraints, we have developed a dual-branch model that integrates manually designed feature noise with conventional CNN features. This model employs a dual-branch strategy, where one branch integrates noise characteristics and the other branch integrates RGB features using the hierarchical ConvNext Module. In addition, the model utilizes edge supervision loss to acquire boundary manipulation information, resulting in accurate localization at the edges. Furthermore, this architecture utilizes a feature augmentation module to optimize and refine the presentation of attributes. The shallowfakes dataset (CASIA, COVERAGE, COLUMBIA, NIST16) and deepfake dataset Faceforensics++ (FF++) underwent thorough testing to demonstrate their outstanding ability to extract features and their superior performance compared to other baseline models. The AUC score achieved an astounding 99%. The model is superior in comparison and easily outperforms the existing state-of-the-art (SoTA) models.

Summary

We haven't generated a summary for this paper yet.