Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Self-Adaptive Quantum Kernel Principal Components Analysis for Compact Readout of Chemiresistive Sensor Arrays (2409.00115v2)

Published 28 Aug 2024 in eess.SP, cs.AI, cs.ET, and cs.LG

Abstract: The rapid growth of Internet of Things (IoT) devices necessitates efficient data compression techniques to handle the vast amounts of data generated by these devices. Chemiresistive sensor arrays (CSAs), a simple-to-fabricate but crucial component in IoT systems, generate large volumes of data due to their simultaneous multi-sensor operations. Classical principal component analysis (cPCA) methods, a common solution to the data compression challenge, face limitations in preserving critical information during dimensionality reduction. In this study, we present self-adaptive quantum kernel (SAQK) PCA as a superior alternative to enhance information retention. Our findings demonstrate that SAQK PCA outperforms cPCA in various back-end machine-learning tasks, especially in low-dimensional scenarios where access to quantum bits is limited. These results highlight the potential of noisy intermediate-scale quantum (NISQ) computers to revolutionize data processing in real-world IoT applications by improving the efficiency and reliability of CSA data compression and readout, despite the current constraints on qubit availability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.