Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 227 tok/s Pro
2000 character limit reached

Negation Blindness in Large Language Models: Unveiling the NO Syndrome in Image Generation (2409.00105v2)

Published 27 Aug 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Foundational LLMs have changed the way we perceive technology. They have been shown to excel in tasks ranging from poem writing and coding to essay generation and puzzle solving. With the incorporation of image generation capability, they have become more comprehensive and versatile AI tools. At the same time, researchers are striving to identify the limitations of these tools to improve them further. Currently identified flaws include hallucination, biases, and bypassing restricted commands to generate harmful content. In the present work, we have identified a fundamental limitation related to the image generation ability of LLMs, and termed it The NO Syndrome. This negation blindness refers to LLMs inability to correctly comprehend NO related natural language prompts to generate the desired images. Interestingly, all tested LLMs including GPT-4, Gemini, and Copilot were found to be suffering from this syndrome. To demonstrate the generalization of this limitation, we carried out simulation experiments and conducted entropy-based and benchmark statistical analysis tests on various LLMs in multiple languages, including English, Hindi, and French. We conclude that the NO syndrome is a significant flaw in current LLMs that needs to be addressed. A related finding of this study showed a consistent discrepancy between image and textual responses as a result of this NO syndrome. We posit that the introduction of a negation context-aware reinforcement learning based feedback loop between the LLMs textual response and generated image could help ensure the generated text is based on both the LLMs correct contextual understanding of the negation query and the generated visual output.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube